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Abstract 

We demonstrate that lattice QCD calculations can be made 103- 
lo6 times faster by using very coarse lattices. To obtain accurate 
results, we replace the standard lattice actions by perturbatively- 
improved actions with tadpole-improved correction terms that remove 
the leading errors due to the lattice. To illustrate the power 
of this approach, we calculate the static-quark potential, and the 
charmonium spectrum and wavefunctions using a desktop computer. 
We obtain accurate results that are independent of the lattice spacing 
and agree well with experiment. 
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1 Introduction 

For 20 years, quantum chromodynamics (QCD) has been the generally 
accepted theory of strong interactions in particle physics. However, physicists 
are only just beginning to show that it explains basic features of low-energy 
strong-interaction physics, such as the spectrum and structure of the hadrons. 
The most significant progress in the study of low-energy (nonperturbative) 
QCD has come from numerical simulations of a lattice approximation to the 
theory. However this approach has been severely limited by the rapid rise 
in computational difficulty as one approaches the physically relevant limit of 
small lattice spacing and large lattice volume. In particular the cost of lattice 
simulations typically grows as am6 when the lattice spacing a is reduced. 
With standard lattice techniques, it is widely felt that lattice spacings of 
0.05-0.1 fm or less are necessary for reasonable accuracy, making simulations 
impossible on all but the largest computers. In this paper, we suggest 
modifications of lattice QCD that permit accurate simulations at lattice 
spacings as large as 0.4 fm, increasing the speed of simulations by a factor 
of 103-106. We illustrate our approach with state-of-the-art calculations of 
the static-quark potential and the charmonium spectrum performed on a 
high-performance personal computer [ 11. 

The central approximation in lattice QCD is replacing continuous 
spacetime by a discrete lattice. The QCD action is discretized by replacing 
space-time integrals with sums and derivatives with differences. Then 
the path integral defining the field theory can be evaluated numerically 
using Monte Carlo techniques. Standard discretizations of the QCD action 
have errors of 0(u2) that are large when the lattice spacing is 0.4 fm. 
However improved discretizations can be designed in which finite-u errors are 
systematically removed by introducing new (nonrenormalizable) interactions 
into the lattice action. This does not add new parameters to the theory, since 
the coefficients of the new interactions are determined, from first principles, 
by demanding that the discretized action reproduces continuum physics to 
a given accuracy.. Since the new interaction terms correct for deficiencies 
in the short-distance behavior of the lattice theory, their coefficients can be 
computed using perturbation theory in asymptotically free theories such as 
&CD, provided the lattice spacing is small enough that perturbation theory 
is applicable at distances of order a and smaller. 

The use of perturbatively improved actions for lattice QCD was suggested 
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long ago [2]. However early tests showed litt#le benefit from the improvements. 
Furthermore a variety of studies seemed to indicate that perturbative 
dynamics was only relevant at distances significantly smaller than 0.1 fm, 
suggesting that lattice spacings would have to be smaller as well. Recent 
work [3] on lattice perturbation theory, however, has completely changed 
this conclusion. If conventional lattice perturbation theory (in terms of 
the bare coupling) is replaced by an expansion in terms of a renormalized 
coupling, perturbation theory becomes useful even at distances as large 
as 0.5 fm. If in addition lattice operators are “tadpole improved” the 
convergence of the perturbative expansions needed to define improved actions 
is greatly enhanced. Indeed, as we show here, tree-level calculations of the 
improvements suffice in most cases provided operators are tadpole-improved. 
Without tadpole improvement, the correction terms are systematically 
underestimated, sometimes by factors of two or three. 

Tadpole improvement is a technique for summing to all orders the large 
perturbative contributions that arise from tadpole diagrams peculiar to 
lattice &CD. At tree level the improvement is trivial to implement: one 
replaces each lattice QCD link operator UP in the action by oP = UP/us, 
where ua is a scalar mean value of the link, defined to be the fourth root of the 
expectation value of the four-link plaquette in Monte-Carlo simulations [3]. 

In several earlier papers, we have advocated the use of perturbatively 
improved actions with tadpole improvement [l, 3, 4, 51. Such actions have 
already proven very successful in simulations of heavy-quark mesons like 
the Y. In the nonrelativistic NRQCD quark action [6], both relativistic effects 
and finite-a corrections are introduced through nonrenormalizable corrections 
to the basic action. The detailed simulation results presented in [6] agree well 
with experiment, and many depend crucially on these corrections. Tadpole 
improvement was essential to this success; test simulations without tadpole 
improvement underestimated relativistic effects by as much as a factor of 
two. Similar results have been obtained with improved versions of the Wilson 
quark action when applied to heavy-quark mesons [7]. 

In this paper we present new evidence that perturbatively-improved 
actions, once they are tadpole improved, work well for gluons as well, even 
at spacings as large as a = 0.4 fm. Using improved actions for the quarks 
and gluons on a lattice with a = 0.4 fm, we obtain a static potential 
that is rotationally invariant to within a few percent, the spin-averaged 
charmonium spectrum accurate to within 30-40 MeV, and rotationally 
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invariant charmonium wavefunctions. Our results show lattice-spacing 
independence (scaling) to within 3%. 

2 The Improved Action 
The standard Wilson action for gluons has finite-u errors of order u2. On 
coarse lattices these lattice artifacts lead to severe (up to 40%) deviations 
from rotational invariance of the static quark potential. This can be seen 
clearly in Fig. la (the potential computed on a lattice with a x 0.4 fm), where 
the points for r/a = fi and fi lie far off the line defined by r/a = 1,2,3. 
These artifacts arise because the plaquette operator, from which the Wilson 
action is constructed, contains 0(u2) terms beyond the desired gluon kinetic 

where 

term when it is expanded in powers of derivatives of the gauge field [8]: 

1 - gReTrU,l = rp’) C Tr(F,,F,,) + u2 [riP’)~i + r!j”)~z + rf’)~s] 
P7” 

+ O(u*) + total derivatives, 
(1) 

(2) 

Here the ri are coefficients in the operator product expansion of the plaquette. 
(Tree-level ri’s are tabulated for a variety of loop operators, like the plaquette, 
in [9].) Note that RI communicates the lattice’s violation of Lorentz 
invariance, and is therefore responsible for the bad behavior of the static 
potential, while R2 and R3 are Lorentz invariant. If we want to eliminate 
the O(a2) lattice artifacts then we need to form an improved action by 
adding other Wilson loops to the action, which will give canceling amounts 
of RI, Rs, Rs. 

Only RI contributes in Eq. (1) at tree-level, but quantum corrections 
bring in the other two operators. To remove all three, it might seem that we 
need to add three new Wilson loops to cancel these terms, but actually the 
coefficient of R3 can be set to zero by a change of field variable in the path 
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Figure 1: Static-quark potential computed on 64 lattices with a x 0.4 fm 
using the /3 = 4.5 Wilson action and the improved action with ppl = 6.8. 
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integral, 
A, + A, + a2 as f(4 c &&, (3) 

so only two new terms are needed [lo, 9). There are many possible choices 
for these, but we take the rectangle and “parallelogram”: 

(4) 
The improved action is [lo, 9] 

WI = /3,lxiReTr(l -U,r) 
PI 

+ Prtx$eT41 - Kt> 

+ ,Opg~~ReTr(l -Up& (5) 
Pt3 

with BP, given as an input, and prt and ppg computed in tadpole-improved 
perturbation theory to cancel out the O(a2) terms in the derivative expansion 
of the action. At tree-level, the p’s are readily computed by combining 
expansions like Eq. (1) f or each of the three loops. They are tadpole-improved 
by dividing each Wilson loop with L links by (~0)~ [3]. One-loop corrections 
have also been computed (111, but must be adjusted to account for the tadpole 
improvement. We find: 

Prt = -& (1 + 0.4805a,), (6) 
0 

P PI3 = -%003325a . 9' (7) 
UO 

Following [3], we use the measured expectation value of the plaquette 
to determine both the value of the mean link ue and the QCD coupling 
constant cr, , 

uo = (i ReTr(Upl))1’4, 

CY!, = - 
ln($ReTr (Ups)) 

3.06839 ’ 

(8) 

(9) 
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This result follows from the tree-level perturbative calculation of the 
plaquette [12]. Th e couplings prt and ppg are determined self-consistently 
with ue and Q, for a given ,Bpl. As in NRQCD, there is no tuning of the 
couplings for the correction terms: tadpole-improved perturbation theory 
determines them in terms of the single bare coupling BP,. Using identities 
from [9] we find that our action is positive semidefinite at least for &I 1 6.8, 
which is necessary if perturbation theory is to be reliable. 

The perturbative expansion (6) for ,& already demonstrates the power 
of tadpole improvement. If one omits the tadpole factor ui, the expression 
becomes ,& = -ppl(l + 2.0 a,)/20. Note that the coefficient of the one-loop 
term Q, has quadrupled. Tadpole improvement automatically supplies 75% 
of the one-loop contribution needed without improvement. Since cr, x 0.3, 
the unimproved expansion is not particularly convergent. However, with 
tadpole improvement, the one-loop correction is only about lo-20% of &. 

As indicated above, our improved action is not unique. Our techniques 
should work as well for actions with other forms for the correction terms. 
To verify this, we compare results obtained using our improved action above 
with those obtained from a tree-level improved action with a very different 
correction term [13]: 

Strt [U] = /3plCiReTr(l -Up,) 
Pi 

+ Art c $ Rem(l - h), 
trt 

where Utrt is a twisted rectangle operator, 

U trt = IIXI. 
At tree-level, with tadpole improvement, 

P trt = -pPl 

124’ 

(10) 

(11) 

(12) 

Note that tadpole improvement introduces four powers of u,-, here, rather 
than the two powers in ,& above. This makes Strt much more sensitive to 
tadpole improvement. 
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Action ppl (fReTrU,I) a dimensions 
improved 6.8 .46 .40 fm 64, 63 x 9 

7.1 .506 .33 fm 73 x 10 
7.4 .56 .24 fm 83 x 10, g3 x 12 

S trt 4.1 .454 .40 fm 63 x 9 

Wilson 4.5 .34 .40 fm 64 
5.7 .55 .17 fm 123 x 24, 164 

Table 1: Parameters used in our simulations. The additional couplings for 
improved actions were determined using the values listed in the table for ppr 
and the plaquette. 

3 Monte-Carlo Results 

We conducted simulations with improved actions for a range of large lattice 
spacings (Table 1). The static-quark potential computed using our improved 
gluon action and the coarsest lattice is shown in Fig. lb. As in the Wilson 
case (Fig la), the lattice spacing is about 0.4 fm. The dashed line in these 
plots is the standard infrared parameterization for the continuum potential, 
V(r) = Kr - r/12r + c, adjusted to fit the on-axis values of the potential. 
Off-axis points deviate from the fit by 40% for the Wilson theory, indicating 
a significant failure of rotation invariance due to finite-u errors. By contrast, 
the deviations are only 2-4% for the improved theory-negligible for most 
low-energy applications. 

To assess the relative importance of tree-level improvement, tadpole 
improvement and one-loop corrections we computed the potential for several 
different actions, all with Jattice spacings of about 0.4 fm... We focused on 
the deviation AV of V(a,a, a) from the continuum potential adjusted to 
fit on-axis values of the simulated potential. AV is a sensitive indicator of 
violations of rotational invariance. Our results are in Table 2. As expected, 
the correction term in the action is significantly underestimated without 
tadpole improvement. The tadpole-improved action is very accurate both 
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Action AV(fia)/Kfia 
unimproved (Wilson) 0.41(2) 

tree-level improved, no tadpole improvement 
one-loop improved, no tadpole improvement 

0.15( 1) 
0.12(2) 

tree-level improved, with tadpole improvement 
one-loop improved, with tadpole improvement 

0.05( 1) 
0.04( 1) 

twisted-rectangle correction, with tadpole improvement 0.04( 2) 

Table 2: Error in the static quark potential at V(u, a, u) for a variety of gluon 
actions. The lattice spacing in each case is a x 0.4 fm; K is the slope of the 
linear part of the static potential. 

with and without one-loop corrections, suggesting that O(u2a,) corrections 
are comparable to those of O(u4). 

We have also included in Table 2 results obtained using the twisted- 
rectangle action Strt (10). We find that this action gives a potential that is 
essentially identical to that obtained with our other improved action. Note 
that tadpole improvement more than doubles the size of the correction term 
in Strt when a = 0.4 fm. The quality of the results obtained from Strt is 
strong evidence in support of tadpole improvement. 

In computing the potentials, we assumed that the static quark propagator 
is simply the product of link operators U,(x) along the time axis. Our action 
is designed so that this is true at tree level through O( a2), however there are 
corrections of order cr,a2. These arise because of the field transformation in 
Eq. (3). Our potential therefore has errors of U(asu2), even though the action 
is accurate up to.errors of O(crza2,a4). Note that these particular errors in 
our potential do not break rotational invariance and so have no effect on 
the values of AV in Table 2. A straightforward perturbative calculation is 
needed to remove the O(cu,u2) errors from our potential. 

To further check on our improved theory, we examined the spin-averaged 
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spectrum of the $J family of mesons using NRQCD for the c-quarks and 
our improved action at ppl = 6.8, 7.1 and 7.4. Because we were examining 
only the spin-averaged spectrum, we omitted all spin-dependent corrections 
from the NRQCD action, but kept the corrections for O(a, a2) errors, and 
for spin-independent 0(u2/c’) effects [6]. The spectra, normalized to give 
the correct lP-1s splitting, are shown in Fig. 3 together with experimental 
results (dashed lines) and simulation results obtained using the Wilson action 
for the gluons at smaller a’s [6]. All agree to within 30-40 MeV. (The 
2S simulation masses are a little above the true mass, which is expected 
since the simulation does not include light-quark loops.) 

In Fig. 2 we show simulation results for the Coulomb-gauge radial 
wavefunctions of 1S and 1P charmonium as computed with the improved 
action on our coarsest and finest lattices. We also show wavefunctions 
computed from a continuum quark model tuned to reproduce our lattice 
results. The wavefunctions from the different lattice spacings agree well 
everywhere except at r = 0, where agreement is not expected (because 
of renormalization effects). The wavefunctions show remarkable radial 
symmetry considering that the rms radius of the 1S wavefunction, for 
example, is just 0.37 fm, or slightly less than one lattice spacing on the 
coarse lattice -accurate modeling of a hadron -is possible with improved 
actions even when the hadron is only a few lattice spacings in extent. 

We also calculated the ratio of the lP-1s charmonium splitting to the 
square root of the slope V’ of the static potential at r = 0.6 fm [14]; our 
results are in Table 3. (We choose 0.6 fm because we have good simulation 
results for V(T) at that radius and, also, V’ is almost independent of T there.) 
This ratio is a dimensionless quantity that should become independent of 
lattice spacing as we approach the continuum limit. We see that, to within 
our errors, the improved action has reached the continuum limit at a lattice 
spacing of 0.4 fm, whereas the Wilson action has not. The twisted-rectangle 
action also gives excellent results at this lattice spacing. 

Since coarse lattices have far fewer sites and much less critical-slowing- 
down, the cost to produce a statistically independent configuration should 
be much less on a coarser lattice. To examine this issue, we compared our 
results for V(r) with those in [15] which are for the potential computed 
using the Wilson action at ,0 = 6 (324 lattice with a x 0.1 fm). We 
resealed the coordinates and potential from this other study to put them 
in the same units as our ppl = 6.8 results, and examined the potentials 
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Figure 2: The radial wavefunctions for the 1s and 1P charmonium computed 
using improved actions and two different lattice spacings. Wavefunctions 
from a continuum quark model are also shown. Statistical errors are 
negligible for the 1S wavefunction. 
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Action ppl a (1P - lS)/Jv? 
Wilson 4.5 .41 fm 1.38 (5) 

5.7 .17 fm 0.87 (3) 

Improved 6.8 .40 fm 0.90 (1) 
7.1 .33 fm 0.92 (1) 
7.4 .24 fm 0.89 (2) 

S trt 4.1 .40 fm 0.92 (3) 

Table 3: Ratio of the charmonium 1P - 1S splitting to the square root of 
the derivative of the static potential V(r) at 0.6 fm. 

at comparable dist antes. The results from both simulations are listed in 
Table 4. In both cases the potential is obtained from the time dependence 
of looplike correlation functions for times equal to or larger than some ‘&in. 
Results should become independent of T’in once-it is sufficiently large; with 
our much smaller statistical errors, we can measure the small shift when Tmin 
is doubled from .4 fm to .8 fm. Our results required 1.3 x 10’ site updates, 
while the analysis on the fine lattice required 6.4 x log site updates. Since 
statistical errors (for Tmin = 0.4 fm) are about 20 times smaller for the coarse 
lattice, we estimate that comparable errors with the fine lattice would require 
197,090 times more site updates than we used on the coarse lattice. 

4 Conclusions 

We have found that, by using perturbatively-improved action with tadpole- 
improved operators, we can accurately simulate quark.and gluon dynamics 
on lattices with a spacing as large as 0.4 fm. Using either of two very different 
improved gluon actions, we obtained results for the confining potential and 
for charmonium that are independent of lattice-spacing artefacts to within a 
few percent. 

It is striking that we can obtain accurate results on such coarse 
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r/a, a = a, = 0.40 a = 0.10 
T min = * 4 Tmin = .8 Tmin = -3 

1 0.871 ( 0) 0.887 ( 1) 
0.962 0.839 (11) 

fi 1.373 ( 1) 1.384 ( 2) 
1.361 1.316 (25) 

fi 1.718 ( 2) 1.742 (10) 
1.667 1.581 (54) 
2 1.897 ( 2) 1.941 (10) 

1.924 1.842 (42) 

Table 4: Comparison of the static-quark potential a V(r) as computed on a 
coarse lattice (improved action, ppl = 6.8, a = 0.40 fm), and on a fine lattice 
(Wilson action, p = 6, a = 0.10 fm). Tmin is the shortest time interval used 
in the correlation functions that determine V(r). All times and distances are 
in fm. 

lattices using relatively simple actions. Following the ideas of the 
Wilson renormalization group, one expects, even at fixed, finite lattice 
spacing, to achieve arbitrarily accurate results by adding more and more 
operators to the discretized action, and by calculating their coefficients 
with increasing accuracy. We find that including just the leading 
corrections, with coefficients calculated in (tadpole-improved) tree-level 
perturbation theory, gives excellent results even on our coarsest lattices. 
Ultimately, nonperturbative calculations (for example, using Monte Carlo 
renormalization group methods) should be used to determine the coefficients, 
at least as a check of the perturbation theory. Such nonperturbative 
determinations of the couplings in the lattice action would be very interesting, 
although we expect such an effort to be much more difficult than the tadpole- 
improvement program outlined in this paper, and to produce only small 
changes to the coefficients determined here. In [3], the normalization of 
the strong coupling constant and the leading gluonic operator (F’“) was 
carefully studied. We found that tadpole-improved perturbation theory gave 
normalizations that were extremely close to the nonperturbatively obtained 
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normalization. 
The coarseness of the lattice makes our simulations 104-lo5 times faster 

than ones using unimproved actions; in fact, most of the a = 0.4 fm results 
in this paper were obtained using an IBM RS6000/250 desktop workstation, 
which is powered by a personal-computer CPU (66MHz PowerPC). We 
therefore believe that, using the methods we have described, the QCD 
hadron spectrum can be calculated to an accuracy of a few percent using 
computer resources that are already widely available. And by combining 
these techniques with forefront computing technology, we can begin to 
tackle problems in nonperturbative QCD far more complex than previously 
imagined. 
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